
Documentation for random.h and random.c
Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

#ifndef __random_h
#define __random_h

#include <time.h>
#include <stdlib.h>
#include <math.h>

#define RAND_MAX_30 1073741823
#if RAND_MAX==32767

#define rand30() ((long)rand()<<15|rand())
#elif RAND_MAX<RAND_MAX_30

#define rand30() ((rand()&32767L)<<15|rand()&32767L)
#else

#define rand30() (rand()&RAND_MAX_30)
#endif

#define exprand(a) (-log(((float)rand()+1.0)/(RAND_MAX+1.0))*(a))
#define exprand30(a) (-log(((double)rand30()+1.0)/(RAND_MAX_30+1.0))*(a))
#define unirand(lo,hi) ((float)rand()/RAND_MAX*((hi)-(lo))+(lo))
#define unirand30(lo,hi) ((double)rand30()/RAND_MAX_30*((hi)-(lo))+(lo))
#define signrand() (rand()&1?1:-1)
#define coinrand(p) (rand()<(RAND_MAX+1.0)*(p))
#define coinrand30(p) (rand30()<(RAND_MAX_30+1.0)*(p))
#define intrand(n) (rand()%(n))
#define intrand30(n) (rand30()%(n))
#define thetarand() (acos(1.0-2.0*rand()/RAND_MAX))
#define radrand1(r) ((r)*sqrt((float)rand()/RAND_MAX))
#define radrand2(r) ((r)*pow((float)rand()/RAND_MAX,0.333333333333))
#define powrand(xmin,power)

(xmin*pow(((float)rand()+1.0)/(RAND_MAX+1.0),1.0/(1.0+power)))
#define powrand30(xmin,power)

(xmin*pow(((double)rand30()+1.0)/(RAND_MAX_30+1.0),1.0/(1.0+power)))

unsigned int randomize();
float binomrand(int n,float m,float s);
int intrandp(int n,float *p);
int poisrand(float xm);
float binomialrand(float p,int n);
float gaussrand();
void sphererand(float *x,float rad1,float rad2);
void sphererandd(double *x,double rad1,double rad2);
void randtable(float *a,int n,int eq);
void randshuffletable(float *a,int n);
void showdist(int n,float low,float high,int bin);

#endif

Include: <stdio.h>, <time.h>, <math.h>
Example program: LibTest.c

History: Written 5/12/95; modified 11/12/98. Routines have been moderately tested.
Works with Metrowerks C. Documentation updated 10/16/01. Ported to Linux
10/16/01. Added randtable 11/16/01. Added intrandp 1/14/02. Added poisrand
1/26/02. Added rand30 and other …30 functions 11/8/02, but didn’t document them
until 9/2/03. Added gaussrand 4/24/03. Added intrand30, coinrand30,
RAND_MAX_30, and improved unirand and unirand30 9/2/03. Added radrand1
3/11/04. Added radrand2 and sphererand 3/25/04. Replaced a few implicit type
casts with explicit ones 6/9/04. Added randshuffletable 7/21/05. Changed
randomize() from a macro to a function 8/26/05. Added binomialrand 3/28/06.
Added powrand and powrand30 11/13/06.

Most of these routines return random numbers, chosen from a variety of densities.
They use the stdlib.h rand() function, and have not been analyzed for the randomness
quality. Before using these routines, it is recommended that the random number
generator seed be set with either the stdlib.h function srand(unsigned int seed) or set to
the clock value with randomize.

Note that 1.0*rand()/RAND_MAX returns a uniform density on [0,1] and
(rand()+1.0)/(RAND_MAX+1.0) is uniform on (0,1]. To convert these uniform densities to
the density r(x), first calculate the cumulative probability P(x)=–∞∫xr(x')dx', where it is
seen that P(x) is 0 at x=–∞ and 1 at x=∞. Now if the value for y=P(x) is chosen with a
uniform density, its value mapped onto x has the desired density. Thus a function should
return x=P–1(y). It is also helpful to know that the CodeWarrior compiler on a Macintosh
has RAND_MAX equal to 215–1, whereas it is 231–1 for the gcc compiler on Linux. The
routines that end with a “30” are especially helpful on a Macintosh (and hinder slightly on
Linux) by allowing 230 possible random numbers. For the most part, I have not had any
trouble with the randomness quality on a Macintosh, although in one instance I found net
diffusion of randomly moving particles towards the center of the volume; this
undoubtedly arose from an imperfect random number generator, although the precise
problem is unclear. I solved it by shuffling the lookup table that I was using.

The table below shows the domain, range, and densities of the macros and routines
given here. The domains are the domains over which the functions give reasonable
values, but are not neccessarily sensible. For example, coinrand can accept an input
anywhere between –∞ and ∞, although the function always returns 0 if p<0 and 1 if p>1.
The densities are only strictly correct in the limit that RAND_MAX approaches infinity. In
regions where the density is small (where r(x)∆x≈1/RAND_MAX, for some characteristic ∆x),
a small set of random numbers is mapped to a large output range, leading to relatively
sparse coverage.

Name Domain Range Density
exprand [0,∞) [0,∞) 1/a*exp(–x/a)

(–∞,0] (–∞,0] 1/a*exp(–x/a)
exprand30 [0,∞) [0,∞) 1/a*exp(–x/a)

(–∞,0] (–∞,0] 1/a*exp(–x/a)
unirand (–∞,∞);lo≠hi [lo,hi] 1/|hi–lo|
unirand30 (–∞,∞);lo≠hi [lo,hi] 1/|hi–lo|
signrand {–1,1} {0.5,0.5}
coinrand (–∞,∞) {0,1} {1–p,p}
coinrand30 (–∞,∞) {0,1} {1–p,p}
intrand [1,∞) {0,1,…,n–1} {1/n,1/n,…,1/n}
intrand30 [1,∞) {0,1,…,n–1} {1/n,1/n,…,1/n}

thetarand [0,π] 1/2*sin(x)
radrand1 (–∞,∞) [0,r] 2x/r2

radrand2 (–∞,∞) [0,r] 3x2/r3

powrand (–∞,∞),(–∞,–1) [xmin,∞) (1–m)/xmin*(x/xmin)m

powrand30 (–∞,∞),(–∞,–1) [xmin,∞) (1–m)/xmin*(x/xmin)m

binomrand n>0, all m,s [m–s√(3n),m+s√(3n)] ≈Gaussian with mean m, std. dev. s
intrandp n>0, 0≤pi≤1 {0,1,…,n–1} {p0,p1-p0,…,1-pn-2}
poisrand (–∞,∞) [0,∞) Poisson with mean xm
binomialrand [0,1],[0,∞) [0,n] Binomial deviate, prob. p, n trials
gaussrand (–∞,∞) Gaussian with mean 0, std. dev. 1
sphererand [0,∞)2 [–rad2,rad2]3 Point in spherical shell
sphererandd [0,∞)2 [–rad2,rad2]3 Point in spherical shell

randomize
This sets the random number generator seed to the current time and also returns the
seed that was used.

exprand
This returns an exponentially distributed random double.

exprand30
This is identical to exprand, except it uses a 30 bit random number.

unirand
This returns a uniformly distributed double between lo and hi, inclusive.

unirand30
This is identical to unirand, except it uses a 30 bit random number.

signrand
This returns 1 or –1 with equal probability.

coinrand
This returns 1 with probability p, and 0 otherwise.

coinrand30
This is identical to coinrand, except is uses a 30 bit random number.

intrand
This returns an integer between 0 and n-1 with equal probability for each value.
The probability distribution is correct if n is a divisor of RAND_MAX+1 (i.e. an integer
power of 2), quite good if n is a small integer, and poor if n is a significant fraction
of RAND_MAX and not a divisor of RAND_MAX+1.

intrandp
This is identical to intrand, except it uses a 30 bit random number.

thetarand
This is intended for use in choosing a random q direction in spherical coordinates.

radrand1
This is intended for use in choosing a random radius within a circle of radius r. In
combination with a random angle (uniform between 0 and 2π), this yields a random
point uniformly distributed within the circle.

radrand2
This is intended for use in choosing a random radius within a sphere of radius r. In
combination with a random spherical angle, this yields a random point uniformly
distributed within the sphere.

powrand
This returns a random number chosen from a power law distribution with slope m,
which needs to be <–1. xmin is typically positive, in which case it is the smallest
number that can be returned; it can also be negative, which just switches the sign of
the returned value.

powrand30
This is identical to powrand, but for 30-bit random numbers. It is advised for
accurate work because of the very long tail of the distribution.

binomrand
This adds together n random variables from a uniform density and then scales the
sum to yield the proper mean and standard deviation. It’s an easy alternative for a
true Gaussian density, although not as fast or as well distributed as a look-up table
and interpolation (see randtable). It’s also misnamed, since a true binomial
distribution is the sum of numbers chosen from {0,1}.

intrandp
This is similar to intrand, but allows non-uniform probabilities for each integer
(however, it doesn’t improve on the distribution accuracy for large n values). p is
sent in as a list of cumulative probabilities for each integer. Since they are
cumulative, p is an increasing list of numbers between 0 and 1, and pn-1 should be
equal to 1. Results will always be between 0 and n-1, even with incorrect p values.

poisrand
This returns an integer chosen from a Poisson density with mean xm, which will
typically be in the range xm±√xm. This routine is copied almost verbatim from
Numerical Recipies. A feature which the book routine has and which is kept here is
that if the routine is called more than once with the same value of xm, it doesn’t
recalculate some variables, in order to speed up the routine. Negative values of xm
are possible but always return a value of 0.

binomialrand
This returns a random integer (as a float) chosen from a binomial distribution for n
trials, each with probability p. It is the number of successes for these n trials. The
routine was copied nearly verbatim from Numerical Recipies.

gaussrand
This returns a normal deviate with mean 0 and standard deviation 1 using the Box-
Muller transformation described in Numerical Recipies.

sphererand
This returns a 3 dimensional point in x which is uniformly distributed within a
spherical shell bounded on the inside by rad1 and the outside by rad2 (both
inclusive). For a fixed radius, set both rad1 and rad2 to the radius. The input
contents of x are ignored although it needs to be allocated to at least size 3.

sphererandd

This is identical to sphererand except that it uses doubles rather than floats.

randtable
This fills in a lookup table with entries for quickly converting a uniform density to
an alternate density, using eq to indicate which density is desired. n is the number
of elements in the table. If eq is 1, the density is a normal density with mean 0 and
standard deviation 1; returned values range from –erf–1(0.5/n–1) to erf–1(0.5/n–1).
For example, if rt is a table with 1024 elements, the following expression would
return a normally distributed random variable with mean mu and standard deviation
sd: x=mu+sd*rt[rand()&1023], also the range is from –2.33 to 2.33. Clearly, there
are only n possible outcomes in this expression, which could be corrected by linear
interpolation and somewhat slower and lengthier code.

randshuffletable
This shuffles a list of n numbers such that each number is equally likely to end up at
any position in the list.

showdist
This is only intended for debugging routines such as binomrand, so it is not a
general routine. It plots a bar graph (bin bars that range from the first bar center at
low to the last bar center at high) showing the distribution of n random variables
from binomrand(10,0,1) or some other routine; it also displays the actual mean and
standard deviation.

